PHYSICAL REVIEW E 66, 056101 (2002

Scaling analysis of a divergent prefactor in the metastable lifetime of a square-lattice Ising
ferromagnet at low temperatures

Kyungwha Park* M. A. Novotny?" and P. A. Rikvold*
1School of Computational Science and Information Technology, Florida State University, Tallahassee, Florida 32306
2Department of Physics and Astronomy, Mississippi State University, Mississippi State, Mississippi 39762
SCenter for Materials Research and Technology and Department of Physics, Florida State University, Tallahassee, Florida 32306
(Received 17 June 2002; published 5 November 2002

We examine a square-lattice nearest-neighbor Ising quantum ferromagnet cougeidnensional phonon
baths. Using the density-matrix equation, we calculate the transition rates between configurations, which
determines the specific dynamic. Applying the calculated stochastic dynamic in Monte Carlo simulations, we
measure the lifetimes of the metastable state. As the magnetic field apprédiiies2 at low temperatures,
the lifetime prefactor diverges because the transition rates between certain configurations approach zero under
these conditions. NedH|/J=2 and zero temperature, the divergent prefactor shows scaling behavior as a
function of the field, temperature, and the dimension of the phonon baths. With proper scaling, the simulation
data at different temperatures and for different dimensions of the baths collapse well onto two master curves,
one for|H|/J>2 and one fofH|/J<2.
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[. INTRODUCTION sure the lifetimes of the metastable state. To measure the
lifetimes, the initial configuration is set to be all spins up,
Compared to the exponentials that occur in the expresand a magnetic field which favors all spins down is applied.
sions for particular physical quantities, the associated prefacFhen the number of spin-flip attempts is measured until the
tors are often assumed to be too unremarkable and unintesystem magnetization reaches zero. At a particular value of
esting to examine, so that the study of prefactors has beehe magnetic fieldH|/J=2, wherel is the nearest-neighbor
ignored in many cases. However, this is not always true. Irexchange coupling constant, the present dynamic does not
this paper, we explore interesting behavior shown by thallow transitions between certain configurations. This causes
prefactors of the lifetime of the metastable state of a twothe lifetime to diverge as the temperature approaches zero
dimensional nearest-neighbor Ising ferromagnet interactingnd|H|/J— 2. Since the energy barrier between the stable
with phonon baths. Metastability occurs often in many dif-and metastable states is finite, this means that the prefactor of
ferent systems, ranging from supercooled fluids and vaporthe lifetime must diverge asi|/J— 2. If the Glauber dy-
[1,2] to spin system$3] and quantum liquid$4]. In those  namic is applied to the system instead, then the lifetime pref-
systems, some type of weak noisier example, thermal actor has a finite, field-independent value fét|/J>2,
noisg can drive the system from the metastable state to thevhich is different from that for|H|/J<2 [9,10. Conse-
stable state across a saddle point at an extremely small raiguently, the divergence of the prefactor is due to the specific
Therefore, the average waiting time before escape from dynamic imposed on the spin system. From the dynamic
metastable state is usually extremely long. Monte Carlo simulations, we demonstrate that this divergent
Recently, we examined a square-lattice Ising quantum ferprefactor reveals a scaling behavior that is determine@i%y
romagnet with a phonofi.e., bosoni¢ bath attached to each and the ratio (H| —2J)/(kgT), whereT is the absolute tem-
spin, in the presence of a longitudinal magnetic fi@@b].  peraturekg is Boltzmann’s constant, andlis the dimension
The time evolution of the spin system is determined by theof the phonon baths.
linear coupling of the system with the phonon baths, and the Quite recently, Maier and Stein investigated the effects of
dynamic (defined by the transition rates between differentweak noise on the magnetization reversal rate in an over-
spin configurations is calculated using the quantum- damped one-dimensional classical Ginzburg-Landau model
mechanical density-matrix equation. The resulting dynamiof finite length[11]. There is no applied field in their model,
is different from the Glauber dynami7], which can be so thermal fluctuations drive the system from one stable con-
derived in a similar way from coupling with fermionic baths figuration (magnetization near-1) to another(magnetiza-
[8]. In the present paper, the calculated transition rates aron near— 1) through a saddle point. They analytically cal-
applied in dynamic Monte Carlo simulations in order to mea-culated the prefactor of the magnetization reversal rate, and
found that the rate prefactor diverges as the systemlsize
reachesr or 27, depending on the boundary conditions. A
*Electronic address: park@dave.nrl.navy.mil; present addressimilar prefactor divergence occurs in a two-dimensional
Center for Computational Materials Science, Code 6390, Naval Reaonequilibrium mode]12]. Shneidman and Nitdl 3] studied

search Laboratory, Washington, D.C. 20375. a metastable lattice-gas model with nearest-neighbor interac-
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stable state beyond the zero-temperature limit. The lifetiméhe heat bath is much smaller than the times of interest, we
prefactor exhibited distinctive peaks as a function of field,integrate over all degrees of freedom of the bath. Then the
which disappear at zero temperature. transition rate from themth to the kth eigenstate off,
The remainder of this paper is organized as follows. Inbecomeg5,6]

Sec. I, we describe our dynamic quantum model, and in Sec.
[l we show how to calculate the prefactor analytically and
numerically. In Sec. IV, we present our scaling analysis of
the prefactor, and in Sec. V we present a discussion and our
conclusions. X 6(Em—Ex—fiwy), (6)

2
Wim= 7~ qzn Kng+ 1K Hsp.ping . m)*(ngl ppring)
g

where E,, and E, are the energy eigenvalues ®f, and
Em>Ey. Heren, is the average occupation number of the

To derive the classical dynamite., transition ratesfrom ~ phonon mode withg, and pyy, is the density matrix of the
the quantum system, we use the Hamiltonian phonon bath. We can calculate the transition rate wiBgn
<E, similarly. Eventually we obtain

II. DYNAMIC QUANTUM MODEL

H="Hgsp+ Hpn+ Hsp-phs ()
\? (Ex—Ep)? |
km

1] i

()

whered is the dimension of the heat bat®,=2 (27) for
+ d=1,2(3), p=M/a’ wherea s the lattice constangis the
th:2 hwgCqCyq, (3 sound velocity, ang3=1/kgT. The two major differences
q ; ; .
from the Glauber dynamic are the energy difference term in

7 the numerator and the negative sign in the denominator. In
Hsp_ph:)\z \ IZNMw (iq g}‘)(c(‘;_cq)eiqR;, (4) the limit T—0, the transition rates vanish whefy,=E,
i.a q

(this can occur fotH|=2J,4J). Despite their unusual form,
) ) o ) ) these transition rates satisfy detailed balance. The transition
whereHgpis the spin Hamiltoniarf{y, is the phonon Hamil- 565 for differend scaled by kgT)® are shown in Fig. ()
tonian, andHg;pn [14] is the Hamiltonian describing the a5 functions ofg(E,—E,). This can be compared with the

simple linear spin-phonon coupling. The first sum in B3).  yransition rate for the Glauber dynamic, shown in Figh)1
runs over nearest-neighbor sites only on a two-dimensional

square lattice,J (>0) is the ferromagnetic exchange cou-
pling constantg” are thez components of Pauli spin opera-
tors attached to lattice sife(in our notation, their eigenval- We apply the calculated transition rates for the
ues are+1), andH is a longitudinal magnetic field. The d-dimensional phonon dynamic in Monte Carlo simulations
index q is the wave vector of a phonon mode, is the ~ and measure the lifetimes of the metastable sfatere we
angular frequency of the phonon mode with wave vector considerH <0 only in Eq.(2).] First, we summarize theoret-
andc} andc, are the corresponding creation and annihila-ical predictions for the lifetime. AT —0, the exact predic-
tion operators. The constant(its dimension is energys the  tion [17,18 for the energy barrier between the metastable
coupling strength between the spin system and the phoncand stable states is given by
heat bathN is the number of unit cells in the systei, is , P
the mass per unit cell, arfg} is the position of sitg. Details I'(H,3)=83/c=2[H|(/c~/c+1), ®
of this model were presented in Reff§,6], and thus here we
only briefly sketch the main ideas.

With the given spin Hamiltonian, the dynamic is deter-
mined by the generalized master equafith,16,

lll. PREFACTOR: THEORY AND SIMULATION

where the linear critical droplet size in units of the lattice
constant is”.=[2J/|H|], and[x] denotes the smallest inte-
ger not less tham. For example, for 2<|H|<4J, /.=1,
and forJ<|H|<2J, /.=2. (At |H|=2, the critical droplet

dp(O)rm size change}:.l_:or/c>_1, t_he critical droplet is a cluste_r of

BT TI %[p(t),Hsp]m,er 5m/m2 () nnWhn overturn_e_d spins, which is a_rfcx(/'c— 1) _rectangle_ with
n#m one additional overturned spin on one of its long sides. For
— Yo s /=1, a singl_e overturned spin is _the critical_ droplet. This

formula is valid only when 2/|H| is not an integer and

W+ W, |H|<4J. At low temperatures, the mean lifetime is the in-
Ymm= 5 W= Wims (5)  verse of the probability of escaping from the metastable well,
k#m which can be written agl7]
wherep(t) is the time-dependent density matrix of the spin (ry=A(H,T)expT/T), 9)

system,m’, n, k, and m are eigenstates of(s,, p(t)mm
=(m’|p(t)|m), andW,, is the transition rate from theth  whereA(H,T) is the prefactor. In this equation and hereafter,
to thekth eigenstate. Assuming that the correlation time ofwe setkg=1. We measurér) in units of Monte Carlo spin-
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1 FIG. 2. The prefactoA vs field |H| for the Glauber dynamic

and thed-dimensional phonon dynamics. The open symbols are
from the Monte Carlo simulations dt=0.1 with the phonon dy-

() namics. The curves are from the low-temperature analytic results

Egs. (10) and (11) with the phonon dynamics, while the straight

solid lines are for the Glauber dynamic. For ttie1 simulation

data with the phonon dynamic, a lower temperature or a field farther

away from|H|=2 is needed to agree with the analytic results,

compared to the simulation data for higlieit |H|=2, the critical

droplet size changes, so the theoretical prediction (By.is not

valid. The filled symbols are from the Monte Carlo simulations with

the phonon dynamics 8| =2, except for the filled triangle, which

is from the Glauber dynamic. Here the prefactorgt=2 for both

the phonon and Glauber dynamics were obtained by extrapolating

low-temperature simulation datérom T/J=0.04 toT/J=0.2) to

zero temperature.
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FIG. 1. (a) Transition rateW divided by T¢ vs the energy dif-
ferenceAE scaled byT for the d-dimensional phonon dynamics.

BT e o 4
(T 0= a8 _2H)? |

(We use units such de=1.) Here we ignore the proportionality FOr 1<|H[<2,
constant inW, settingh?/@® 7#971c%*2=1. (b) Transition ratew
. d _ d
vs AE/T for the Glauber dynamic. [H|®+2(2—[H])
A(H,T—0d)= (11

2973 H 42— H|)¢

flip attempts(MCS). In our case, a unit Monte Carlo step is Near|H|=2, both below and above, we find from E¢%0)
defined to be the inverse of the coefficient of the transitiorand (11) that for |H| fixed,

rate [Eq. (7)] multiplied by J%: 0 A9 1cd*2/(\239). (For

the single-droplet decay mode considered hér,is inde-

pendent of the system size if measured in M{3519].)
Hereafter, the fieldH and temperatur@ are given in units of

J, and we setl=1.

lim A(H,T,d)=
T—0/[H|#2

CylIH]

,2|d’ (12)

whereC,;=29"2 for |H|>2 andC,;=29"3 for [H|<2. On
The lifetime can be calculated analytically in terms of thethe other hand, agH|—2* at nonzeroT, with the

shrinking and growing probabilities of a droplet, using ad-dimensional phonon dynamic, the transition ratg,, [Eq.

rejection-free techniqui20] and estimating the first-passage (7)], approached||H|—2|9"! times a constant. Since the

time until the system contains a critical droplet and over-ransition rate is inversely proportional to the prefactor, we
comes the barrie[9,21]. Then from Egs.(7) and (9), the  find that forT fixed,

prefactorA can be calculate@6] as a function of the field

with the d-dimensional phonon dynamic, using absorbing

Markov chains(AMC) [9,21] in the limit T—0. For 2 lim
<|H|<4, [H|—2%,T>0

C,

AH,T,d)=——"—
TIH[ =2/

(13
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FIG. 3. Log-log plots of the prefactak(H,T,d) vs||H|—2| at different temperatures f¢a) d=1, (b) d=2, and(c) d=3 dimensional
phonon dynamics, as the fieltH| approaches 2 from abov@mpty symbols and below(filled symbols. In (c), only data for two
temperatures are shown for clarity, while the simulations were performet=f@.01, 0.02, 0.03, 0.06, and 0.1. There are two regimes in
these plots(1) As ||H|—2|/T—0 (the left-hand side of the plotsthe slopes of the linear curves for different temperatures becefae
—1). (2) As||H|—2|/T— (the right-hand side of the plgtsthe curves for different temperatures collapse onto single linear curves whose
slopes are-d. These results are predicted from E¢E2) and (13).

where the constar@, may depend owl. The exact value of =2, the dynamic behavior of the system does not depend on
C, could not be obtained analytically, so we examine it nu-the examined system siz€This was confirmed by compar-
merically (at the end of Sec. IV As |H|—2*, ford=1 the ing with simulations fo.=48.) The range of temperatures
prefactor approacheS,/T so that there is no field depen- examined was betweéin=0.006 andl = 0.10, and the range
dence, but ford=2 and 3 the prefactor diverges as of fields used was fromH|—2=+10"°to |H|—2=+0.3.
C,/(T||H|—2|) andC,/(T||H|—2/|?), respectively. At significantly low temperatures in a particular field or in a
To investigate the region in which Eqd.2) and(13) are  field quite close tdH|=2 at a particular temperature, the
applicable, and to examine whether there is any scaling bevlPFUN packagé22] was used for arbitrarily high-precision
havior in the prefactor negH|=2 andT=0, we performed calculations. Equatiori9) was used to obtain the prefactor
Monte Carlo simulations with absorbing Markov chainsfrom the measured average lifetimes.
(MCAMC) [9,21] near|H|=2 at low temperatures, using the Figure 2 illustrates the analytic and numeri¢donte
d-dimensional phonon dynam[&g. (7)]. Average lifetimes Carlo simulations aff=0.1) prefactors as functions of the
were measured over 2000 escapes with the linear system sifield with the Glauber and thé-dimensional phonon dynam-
L=24 and periodic boundary conditions. Since this systenics. The analytic results for the prefactor with the phonon
size is much larger than the critical droplet size nfdf  dynamics diverge adi|— 2. This divergence does not oc-
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FIG. 4. Log-log plots of T|[H|—2|* *A(H,T,d) vs x=||H] FIG. 5. Log-log plots ofT||H|—2|¢"A(H,T,d) multiplied by

—2|/T for different temperatures (for ~d=1, T  2dys||H|—2|/T for differentT andd. For|H|>2 (or |[H|<2), all
=0.006, 0.01, 0.02, 0.03; fat=2, T=0.02, 0.03,0.04,0.06; and the simulation data for different and d collapse onto a single
for d=3, T=0.01, 0.02, 0.03, 0.06, 0.1) and different-dimensionalcyrve. The scaling function fofH|>2 is different from that for
phonon dynamics. For each value afthe upper curves are for |H|<2. Here the saturation value ofP||H|—2|9 1A(H,T) as
|H|>2, while the lower curves are foH|<2. The simulation data ||[H|—2|/T—0 (that is, 2 C,) is approximately 2/3, so that,

for different temperatures collapse well for each valued.oflso, ~2/3X 12,

for large x, the curves ford and|H|<2 coincide with those fod

+1 and|H|>2, and the curves multiplied by 2 far+1 and|H| IV. SCALING

>2 (|H|<2) coincide with the curves fod and |H|>2 (|H

|<2). Assuming that the prefactok is a generalized homoge-
neous functiorf23] of the field and temperature only, we can
write it as

cur with the Glauber dynamigstraight solid lines in Fig. 2
The simulation data at =0.1 agree well with thel analytic AN \2TT)=\2A(h,T), (14)
results far away fromiH| =2, but they start to deviate from

the analytic results afH| approaches 2. This deviation is whereh=|H|—2. Choosingh =T 7, this gives

more significant for lower-dimensional phonon baths

(smallerd) at a fixed temperature, as shown in Fig. 2. For 1>aA’aT

+

d=3, the simulation data dt= 0.1 deviate from the analytic A(h,T)= (? ' (15

results only when the field is much closer to 2 than for the
d=1 simulation data. We also find that lower-dimensionalywhered*(x) are scaling functions fox=h/T2/21>0 and
phonon dynamics need much lower temperatures to agree<Q, respectively. Since the prefactor has the asymptotic
with the analytic results d$1| approaches 2. From now on, pehaviors shown in Eq¢12) and(13), the scaling functions

Tan lat

we concentrate on the phonon dynamics only. ®*(x) should have these properties:
Figure 3 shows log-log plots of the prefactor as a function
of field at different temperatures and for differetFor d 1 C,
=1, 2, and 3, the simulation data show two regimes where im ®*(x)=———, |lim®*(x)=—=. (16)
Egs. (12 and (13) hold, respectively. Roughly speaking Ix| e Calx|® x-0 I

(more precise statements will be made in Seg.when the
field is not too close tdH|=2 [about the right halves of . - °

Figs. 3a), 3(b), and 3c)], below (or above |H|=2, the Il"(nﬁ-?-)dctl?:(ﬁ?-r?AlaT_d and ay/ar=1, so A(h.T)
prefactors at different temperatures converge to a linear IF we rewrite. the brefactor using scaling functions
curve. Ford=1, these converging linear curves can be foun *(x) = [x]9" 1D = (x) v?hich have theg 0 ertigs '
for larger||H| — 2| at higherT. The slopes of the converging B : brop

From the above properties, the scaling exponents are deter-

linear curvedthis is easily seen fal=2 and 3) are approxi- 1
mately —d, as expected from Eq12). When the field is lim ¥*(x)= SN lim ¥*(x)=C,, (17)
close enough t¢H|=2 (the left halves of Fig. B the pref- [x] e X x-o0

actor at fixed temperature again behaves linearly With
—2| on a logarithmic scale. As expected from E#j3), the
slopes of those linear curves are approximate(yl— 1) and 1
do not depend on temperature, but the intercepts are different Ah,T)==
for different temperatures. T

then the prefactor can be written as

h
LI

hd—l T

056101-5



PARK, NOVOTNY, AND RIKVOLD PHYSICAL REVIEW E 66, 056101 (2002

For |H|>2, the saddle point corresponds to the configu-

SH | E.-E =8-2/HI ration SA, only one overturned spin, so the most probable
\ itz path to escape from the metastable well is:8A. As |H|
f EsE #8-2HI —27, the energy difference between SA and C approaches
i zero (Fig. 6), so the transition rate between them becomes
C L1 e DD EcEypd-2H zero. Consequently, the attempt frequency to grow the drop-
f E¢4E =4-2HHI let along the downhill path SA-C decreases. This is the
/ E.-E . =-2HI reason that the lifetime prefactor divergegld$—2". Then,
SA [ sEEsE a new probable path towards SC through SA begins to be
+ preferred to the downhill path. AH|=2, the path SA-C is
. forbidden, and the most probable path is directed towards the
A all spins up saddle point SC.

For |H|<2, the saddle point corresponds to the configu-
FIG. 6. Schematic diagram that shows the most probable pathgation SB, an L-shaped cluster of three overturned spins. For
of the system for different fields. Each box represents one overthis field, the most probable path to escape from the meta-
turned spin. Each configuration is labeled. The configuration lastable well is A-SA—C—SB. As |H|—2", the energy
beled SAis the saddle point fpi|>2, SB for|[H|<2, and SC for  gifference between SA and C and the energy difference be-
|H|=2. The energy difference between two configurations is givemyeen C and SB both approach zero, so that the transition
on the right-hand side. As shown,the energy Qiﬁerence between Spyias petween them become zero. As a result, the attempt
and C is zero ajH|=2, and so is the energy difference between Cyo6ncy along the most probable path towards the saddle
and_SB. Therefor_e, 4H|=2, the path from_SA 10 SB through Cis point SB decreases, which leads to the prefactor divergence
forbidden according to the phonon dynamic, E). Consequently, as|H|—2". Then, a new probable path towards SC through

the system chooses the saddle point SC to reach the configurati . .
SB (A—SA—SC—SB). Then the energy barrier 4H|=2 is Ca developgFig. 6). Thus, SC starts to compete with SB. At

Eoc— Ex=2(8—2|H|)=8 since the path from SC to SB is down- |[H|=2, the attempt frequency towards SB is zero, and the
hill in energy. most probaple path is towards the saddlle point SC.

The previously shown scaling behavior of the prefactor

can be observed from the simulation data in Fig. 3. In the

) d-1 , _log-log plots ofA vs [|H| - 2|, a slope of-(d—1) is found
Log-log plots ofT|h|®~*A versush|/T at different tempera for the regime whe|H| — 2|/T—0, while a slope of-d is

tures and for differentl are shown in Fig. 4. The simulation :
data for different temperatures collapse well onto each otheflpund when||H|=2|/T—ce. The variable||H|-2|/T (not

for each value ofl and for|H|>2 (or |H|<2). BecauseC, simply either||H|—_2| or T) determines how those two re-
for a particulard and|H|<2 is the same &€, for d+1 and gimes change with field and temperature. The slope of
|H|>2 [Egs.(12) and(17)], the simulation data in the re- ._(d_dl) o;:curs é"t Srﬂﬂlrﬂg'l/fra at Ioweréerr:perr‘]a}tuges,
gime of large|h|/T for d and|H|<2 fall on the data fod " Ofder to reduce . compared 1o higher-
+1 and|H|>2. Using the fact that for larg¢h|/T and temperature data. The slope efd occurs at larget|H|
[H|>2 (|H|<2), C, multiplied by 2 ford is the same a€, :gllTat higher (tjetmrieraturtes, in ;)rder('j tto increasel |

for d-+ 1, we make log-log plots oTln|® *A mulipied by -~ & U T e prefactor of the life-
29 versus|h|/T for different temperatures and for differet Y, b

(see Fig. 5 Then all the simulation data for different tem- time of the metastable state for a square-lattice Ising ferro-
perature.s and differend collapse well onto two master magnet with ad-dimensional phonon bath attached to each

curves, one fofH|>2 and the other fofH|<2. The satu- spin. Using the transition rates calculated from the density-
ration \’/alue of $T|h|% 1A as|h|/T—0 (29C,) .is approxi- matrix equation, we demo_nst_rated analyticaII_y and numeri-
mately 2/3(we do not know if this value is exactly 2/3 or cally that the metastable lifetime prefactor divergestas

not), S0 thatC,~2/3x 1/2 and C,1/C,. Using this ap- —2, and that it also scales as a function|¢d|—2|/T for

roximate expression fa€, and Eqs(17) and(18), we can each value ofd, near|H|=2 andT=0. This scaling is a
proxi b 2 ds Lod—1 result of the fact that the prefactor is a generalized homoge-
confirm that the slopes of the log-log plots ofT2h|?~*A . . X

N . neous functiorj23] of the field and temperature. The diver-
versusx=|h|/T (Fig. 5 for 'aTg?X are —1 for both|H| gence and scaling of the prefactor are due to the chosen
>2 and|H|<2, and that their intercepts at=1 for |H|

. dynamic, not to any nonsmooth energy landscape at the par-
>2 (|H|<2) are approximately log(1/4) [log,o(1/8)]. tiZuIar magnetic fie)I/d. %y P P

V. DISCUSSION AND CONCLUSIONS
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