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Scaling analysis of a divergent prefactor in the metastable lifetime of a square-lattice Ising
ferromagnet at low temperatures
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We examine a square-lattice nearest-neighbor Ising quantum ferromagnet coupled tod-dimensional phonon
baths. Using the density-matrix equation, we calculate the transition rates between configurations, which
determines the specific dynamic. Applying the calculated stochastic dynamic in Monte Carlo simulations, we
measure the lifetimes of the metastable state. As the magnetic field approachesuHu/J52 at low temperatures,
the lifetime prefactor diverges because the transition rates between certain configurations approach zero under
these conditions. NearuHu/J52 and zero temperature, the divergent prefactor shows scaling behavior as a
function of the field, temperature, and the dimension of the phonon baths. With proper scaling, the simulation
data at different temperatures and for different dimensions of the baths collapse well onto two master curves,
one for uHu/J.2 and one foruHu/J,2.
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I. INTRODUCTION

Compared to the exponentials that occur in the exp
sions for particular physical quantities, the associated pre
tors are often assumed to be too unremarkable and uni
esting to examine, so that the study of prefactors has b
ignored in many cases. However, this is not always true
this paper, we explore interesting behavior shown by
prefactors of the lifetime of the metastable state of a tw
dimensional nearest-neighbor Ising ferromagnet interac
with phonon baths. Metastability occurs often in many d
ferent systems, ranging from supercooled fluids and vap
@1,2# to spin systems@3# and quantum liquids@4#. In those
systems, some type of weak noise~for example, thermal
noise! can drive the system from the metastable state to
stable state across a saddle point at an extremely small
Therefore, the average waiting time before escape from
metastable state is usually extremely long.

Recently, we examined a square-lattice Ising quantum
romagnet with a phonon~i.e., bosonic! bath attached to eac
spin, in the presence of a longitudinal magnetic field@5,6#.
The time evolution of the spin system is determined by
linear coupling of the system with the phonon baths, and
dynamic ~defined by the transition rates between differe
spin configurations! is calculated using the quantum
mechanical density-matrix equation. The resulting dynam
is different from the Glauber dynamic@7#, which can be
derived in a similar way from coupling with fermionic bath
@8#. In the present paper, the calculated transition rates
applied in dynamic Monte Carlo simulations in order to me
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sure the lifetimes of the metastable state. To measure
lifetimes, the initial configuration is set to be all spins u
and a magnetic field which favors all spins down is applie
Then the number of spin-flip attempts is measured until
system magnetization reaches zero. At a particular valu
the magnetic field,uHu/J52, whereJ is the nearest-neighbo
exchange coupling constant, the present dynamic does
allow transitions between certain configurations. This cau
the lifetime to diverge as the temperature approaches
and uHu/J→26. Since the energy barrier between the sta
and metastable states is finite, this means that the prefact
the lifetime must diverge asuHu/J→26. If the Glauber dy-
namic is applied to the system instead, then the lifetime p
actor has a finite, field-independent value foruHu/J.2,
which is different from that foruHu/J,2 @9,10#. Conse-
quently, the divergence of the prefactor is due to the spec
dynamic imposed on the spin system. From the dyna
Monte Carlo simulations, we demonstrate that this diverg
prefactor reveals a scaling behavior that is determined byTd

and the ratio (uHu22J)/(kBT), whereT is the absolute tem-
perature,kB is Boltzmann’s constant, andd is the dimension
of the phonon baths.

Quite recently, Maier and Stein investigated the effects
weak noise on the magnetization reversal rate in an o
damped one-dimensional classical Ginzburg-Landau mo
of finite length@11#. There is no applied field in their mode
so thermal fluctuations drive the system from one stable c
figuration ~magnetization near11) to another~magnetiza-
tion near21) through a saddle point. They analytically ca
culated the prefactor of the magnetization reversal rate,
found that the rate prefactor diverges as the system sizL
reachesp or 2p, depending on the boundary conditions.
similar prefactor divergence occurs in a two-dimensio
nonequilibrium model@12#. Shneidman and Nita@13# studied
a metastable lattice-gas model with nearest-neighbor inte
tions and continuous-time Metropolis dynamics. They cal
lated analytically the prefactor of the lifetime of the met

s:
e-
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stable state beyond the zero-temperature limit. The lifet
prefactor exhibited distinctive peaks as a function of fie
which disappear at zero temperature.

The remainder of this paper is organized as follows.
Sec. II, we describe our dynamic quantum model, and in S
III we show how to calculate the prefactor analytically a
numerically. In Sec. IV, we present our scaling analysis
the prefactor, and in Sec. V we present a discussion and
conclusions.

II. DYNAMIC QUANTUM MODEL

To derive the classical dynamic~i.e., transition rates! from
the quantum system, we use the Hamiltonian

H5Hsp1Hph1Hsp-ph, ~1!

Hsp52J(
^ i , j &

s i
zs j

z2H(
i

s i
z , ~2!

Hph5(
q

\vqcq
†cq , ~3!

Hsp-ph5l(
j ,q
A \

2NMvq
~ iq s j

x!~cq
†2cq!eiqRj , ~4!

whereHsp is the spin Hamiltonian,Hph is the phonon Hamil-
tonian, andHsp-ph @14# is the Hamiltonian describing th
simple linear spin-phonon coupling. The first sum in Eq.~2!
runs over nearest-neighbor sites only on a two-dimensio
square lattice,J (.0) is the ferromagnetic exchange co
pling constant,s j

z are thez components of Pauli spin opera
tors attached to lattice sitej ~in our notation, their eigenval
ues are61), andH is a longitudinal magnetic field. The
index q is the wave vector of a phonon mode,vq is the
angular frequency of the phonon mode with wave vectoq,
and cq

† and cq are the corresponding creation and annihi
tion operators. The constantl ~its dimension is energy! is the
coupling strength between the spin system and the pho
heat bath,N is the number of unit cells in the system,M is
the mass per unit cell, andRj is the position of sitej. Details
of this model were presented in Refs.@5,6#, and thus here we
only briefly sketch the main ideas.

With the given spin Hamiltonian, the dynamic is dete
mined by the generalized master equation@15,16#,

dr~ t !m8m

dt
5

i

\
@r~ t !,Hsp#m8m1dm8m (

nÞm
r~ t !nnWmn

2gm8mr~ t !m8m ,

gm8m5
Wm1Wm8

2
, Wm5 (

kÞm
Wkm , ~5!

wherer(t) is the time-dependent density matrix of the sp
system,m8, n, k, and m are eigenstates ofHsp, r(t)m8m
5^m8ur(t)um&, andWkm is the transition rate from themth
to the kth eigenstate. Assuming that the correlation time
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the heat bath is much smaller than the times of interest,
integrate over all degrees of freedom of the bath. Then
transition rate from themth to the kth eigenstate ofHsp
becomes@5,6#

Wkm5
2p

\ (
q,nq

z^nq11,kuHsp-phunq ,m& z2^nqurphunq&

3d~Em2Ek2\vq!, ~6!

where Em and Ek are the energy eigenvalues ofHsp and
Em.Ek . Herenq is the average occupation number of t
phonon mode withq, and rph is the density matrix of the
phonon bath. We can calculate the transition rate whenEm
,Ek similarly. Eventually we obtain

Wkm5
l2

Qh\d11cd12U ~Ek2Em!d

eb(Ek2Em)21
U , ~7!

whered is the dimension of the heat bath,Q52 (2p) for
d51,2 ~3!, h5M /ad, wherea is the lattice constant,c is the
sound velocity, andb51/kBT. The two major differences
from the Glauber dynamic are the energy difference term
the numerator and the negative sign in the denominator
the limit T→0, the transition rates vanish whenEm5Ek
~this can occur foruHu52J,4J). Despite their unusual form
these transition rates satisfy detailed balance. The trans
rates for differentd scaled by (kBT)d are shown in Fig. 1~a!
as functions ofb(Ek2Em). This can be compared with th
transition rate for the Glauber dynamic, shown in Fig. 1~b!.

III. PREFACTOR: THEORY AND SIMULATION

We apply the calculated transition rates for t
d-dimensional phonon dynamic in Monte Carlo simulatio
and measure the lifetimes of the metastable state.@Here we
considerH,0 only in Eq.~2!.# First, we summarize theoret
ical predictions for the lifetime. AsT→0, the exact predic-
tion @17,18# for the energy barrier between the metasta
and stable states is given by

G~H,J!58Jl c22uHu~ l c
22l c11!, ~8!

where the linear critical droplet size in units of the latti
constant isl c5 d2J/uHu e, and dxe denotes the smallest inte
ger not less thanx. For example, for 2J,uHu,4J, l c51,
and forJ,uHu,2J, l c52. ~At uHu52, the critical droplet
size changes.! For l c.1, the critical droplet is a cluster o
overturned spins, which is anl c3(l c21) rectangle with
one additional overturned spin on one of its long sides.
l c51, a single overturned spin is the critical droplet. Th
formula is valid only when 2J/uHu is not an integer and
uHu,4J. At low temperatures, the mean lifetime is the i
verse of the probability of escaping from the metastable w
which can be written as@17#

^t&5A~H,T!exp~G/T!, ~9!

whereA(H,T) is the prefactor. In this equation and hereaft
we setkB51. We measurêt& in units of Monte Carlo spin-
1-2
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SCALING ANALYSIS OF A DIVERGENT PREFACTOR . . . PHYSICAL REVIEW E66, 056101 ~2002!
flip attempts~MCS!. In our case, a unit Monte Carlo step
defined to be the inverse of the coefficient of the transit
rate @Eq. ~7!# multiplied by Jd: Qh\d11cd12/(l2Jd). ~For
the single-droplet decay mode considered here,^t& is inde-
pendent of the system size if measured in MCS@3,19#.!
Hereafter, the fieldH and temperatureT are given in units of
J, and we setJ51.

The lifetime can be calculated analytically in terms of t
shrinking and growing probabilities of a droplet, using
rejection-free technique@20# and estimating the first-passag
time until the system contains a critical droplet and ov
comes the barrier@9,21#. Then from Eqs.~7! and ~9!, the
prefactorA can be calculated@6# as a function of the field
with the d-dimensional phonon dynamic, using absorbi
Markov chains ~AMC! @9,21# in the limit T→0. For 2
,uHu,4,

FIG. 1. ~a! Transition rateW divided by Td vs the energy dif-
ferenceDE scaled byT for the d-dimensional phonon dynamics
~We use units such askB51.! Here we ignore the proportionality
constant inW, settingl2/Qh\d11cd1251. ~b! Transition rateW
vs DE/T for the Glauber dynamic.
05610
n
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A~H,T→0,d!5
4~2uHu24!d1~822uHu!d

4~2uHu24!d~822uHu!d
. ~10!

For 1,uHu,2,

A~H,T→0,d!5
uHud12~22uHu!d

2d13uHud~22uHu!d
. ~11!

NearuHu52, both below and above, we find from Eqs.~10!
and ~11! that for uHu fixed,

lim
T→0,uHuÞ2

A~H,T,d!5
1

C1uuHu22ud
, ~12!

whereC152d12 for uHu.2 andC152d13 for uHu,2. On
the other hand, asuHu→26 at nonzero T, with the
d-dimensional phonon dynamic, the transition rate,Wkm @Eq.
~7!#, approachesTuuHu22ud21 times a constant. Since th
transition rate is inversely proportional to the prefactor,
find that forT fixed,

lim
uHu→26,T.0

A~H,T,d!5
C2

TuuHu22ud21
, ~13!

FIG. 2. The prefactorA vs field uHu for the Glauber dynamic
and thed-dimensional phonon dynamics. The open symbols
from the Monte Carlo simulations atT50.1 with the phonon dy-
namics. The curves are from the low-temperature analytic res
Eqs. ~10! and ~11! with the phonon dynamics, while the straigh
solid lines are for the Glauber dynamic. For thed51 simulation
data with the phonon dynamic, a lower temperature or a field far
away from uHu52 is needed to agree with the analytic resul
compared to the simulation data for higherd. At uHu52, the critical
droplet size changes, so the theoretical prediction Eq.~8! is not
valid. The filled symbols are from the Monte Carlo simulations w
the phonon dynamics atuHu52, except for the filled triangle, which
is from the Glauber dynamic. Here the prefactors atuHu52 for both
the phonon and Glauber dynamics were obtained by extrapola
low-temperature simulation data~from T/J50.04 toT/J50.2) to
zero temperature.
1-3
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FIG. 3. Log-log plots of the prefactorA(H,T,d) vs uuHu22u at different temperatures for~a! d51, ~b! d52, and~c! d53 dimensional
phonon dynamics, as the fielduHu approaches 2 from above~empty symbols! and below~filled symbols!. In ~c!, only data for two
temperatures are shown for clarity, while the simulations were performed forT50.01, 0.02, 0.03, 0.06, and 0.1. There are two regimes
these plots:~1! As uuHu22u/T→0 ~the left-hand side of the plots!, the slopes of the linear curves for different temperatures become2(d
21). ~2! As uuHu22u/T→` ~the right-hand side of the plots!, the curves for different temperatures collapse onto single linear curves w
slopes are2d. These results are predicted from Eqs.~12! and ~13!.
u

-
s

b

ns
e

s
em

on
-
s

a
e
n
r

e
-
on
-

where the constantC2 may depend ond. The exact value of
C2 could not be obtained analytically, so we examine it n
merically ~at the end of Sec. IV!. As uHu→26, for d51 the
prefactor approachesC2 /T so that there is no field depen
dence, but for d52 and 3 the prefactor diverges a
C2 /(TuuHu22u) andC2 /(TuuHu22u2), respectively.

To investigate the region in which Eqs.~12! and ~13! are
applicable, and to examine whether there is any scaling
havior in the prefactor nearuHu52 andT50, we performed
Monte Carlo simulations with absorbing Markov chai
~MCAMC! @9,21# nearuHu52 at low temperatures, using th
d-dimensional phonon dynamic@Eq. ~7!#. Average lifetimes
were measured over 2000 escapes with the linear system
L524 and periodic boundary conditions. Since this syst
size is much larger than the critical droplet size nearuHu
05610
-

e-

ize

52, the dynamic behavior of the system does not depend
the examined system size.~This was confirmed by compar
ing with simulations forL548.! The range of temperature
examined was betweenT50.006 andT50.10, and the range
of fields used was fromuHu22561025 to uHu22560.3.
At significantly low temperatures in a particular field or in
field quite close touHu52 at a particular temperature, th
MPFUN package@22# was used for arbitrarily high-precisio
calculations. Equation~9! was used to obtain the prefacto
from the measured average lifetimes.

Figure 2 illustrates the analytic and numerical~Monte
Carlo simulations atT50.1) prefactors as functions of th
field with the Glauber and thed-dimensional phonon dynam
ics. The analytic results for the prefactor with the phon
dynamics diverge asuHu→26. This divergence does not oc
1-4
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SCALING ANALYSIS OF A DIVERGENT PREFACTOR . . . PHYSICAL REVIEW E66, 056101 ~2002!
cur with the Glauber dynamic~straight solid lines in Fig. 2!.
The simulation data atT50.1 agree well with the analytic
results far away fromuHu52, but they start to deviate from
the analytic results asuHu approaches 2. This deviation
more significant for lower-dimensional phonon bat
~smallerd) at a fixed temperature, as shown in Fig. 2. F
d53, the simulation data atT50.1 deviate from the analytic
results only when the field is much closer to 2 than for
d51 simulation data. We also find that lower-dimension
phonon dynamics need much lower temperatures to a
with the analytic results asuHu approaches 2. From now on
we concentrate on the phonon dynamics only.

Figure 3 shows log-log plots of the prefactor as a funct
of field at different temperatures and for differentd. For d
51, 2, and 3, the simulation data show two regimes wh
Eqs. ~12! and ~13! hold, respectively. Roughly speakin
~more precise statements will be made in Sec. V!, when the
field is not too close touHu52 @about the right halves o
Figs. 3~a!, 3~b!, and 3~c!#, below ~or above! uHu52, the
prefactors at different temperatures converge to a lin
curve. Ford51, these converging linear curves can be fou
for largeruuHu22u at higherT. The slopes of the convergin
linear curves~this is easily seen ford52 and 3) are approxi-
mately 2d, as expected from Eq.~12!. When the field is
close enough touHu52 ~the left halves of Fig. 3!, the pref-
actor at fixed temperature again behaves linearly withuuHu
22u on a logarithmic scale. As expected from Eq.~13!, the
slopes of those linear curves are approximately2(d21) and
do not depend on temperature, but the intercepts are diffe
for different temperatures.

FIG. 4. Log-log plots ofTuuHu22ud21A(H,T,d) vs x5uuHu
22u/T for different temperatures ~for d51, T
50.006, 0.01, 0.02, 0.03; ford52, T50.02, 0.03, 0.04, 0.06; and
for d53, T50.01, 0.02, 0.03, 0.06, 0.1) and different-dimension
phonon dynamics. For each value ofd, the upper curves are fo
uHu.2, while the lower curves are foruHu,2. The simulation data
for different temperatures collapse well for each value ofd. Also,
for largex, the curves ford and uHu,2 coincide with those ford
11 anduHu.2, and the curves multiplied by 2 ford11 anduHu
.2 (uHu,2) coincide with the curves ford and uHu.2 (uH
u,2).
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IV. SCALING

Assuming that the prefactorA is a generalized homoge
neous function@23# of the field and temperature only, we ca
write it as

A~lahh,laTT!5laAA~h,T!, ~14!

whereh5uHu22. Choosingl5T21/aT, this gives

A~h,T!5S 1

TD aA /aT

F6S h

Tah /aT
D , ~15!

whereF6(x) are scaling functions forx5h/Tah /aT.0 and
x,0, respectively. Since the prefactor has the asympt
behaviors shown in Eqs.~12! and~13!, the scaling functions
F6(x) should have these properties:

lim
uxu→`

F6~x!5
1

C1uxud
, lim

uxu→0
F6~x!5

C2

uxud21
. ~16!

From the above properties, the scaling exponents are d
mined to be aA /aT5d and ah /aT51, so A(h,T)
5(1/T)dF6(h/T).

If we rewrite the prefactor using scaling function
C6(x)5uxud21F6(x), which have the properties

lim
uxu→`

C6~x!5
1

C1uxu
, lim

uxu→0
C6~x!5C2 , ~17!

then the prefactor can be written as

A~h,T!5
1

T

1

hd21
C6S h

TD . ~18!

l

FIG. 5. Log-log plots ofTuuHu22ud21A(H,T,d) multiplied by
2d vs uuHu22u/T for differentT andd. For uHu.2 ~or uHu,2), all
the simulation data for differentT and d collapse onto a single
curve. The scaling function foruHu.2 is different from that for
uHu,2. Here the saturation value of 2dTuuHu22ud21A(H,T) as
uuHu22u/T→0 ~that is, 2d C2) is approximately 2/3, so thatC2

'2/331/2d.
1-5
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Log-log plots ofTuhud21A versusuhu/T at different tempera-
tures and for differentd are shown in Fig. 4. The simulatio
data for different temperatures collapse well onto each o
for each value ofd and foruHu.2 ~or uHu,2). BecauseC1
for a particulard anduHu,2 is the same asC1 for d11 and
uHu.2 @Eqs. ~12! and ~17!#, the simulation data in the re
gime of largeuhu/T for d and uHu,2 fall on the data ford
11 and uHu.2. Using the fact that for largeuhu/T and
uHu.2 (uHu,2), C1 multiplied by 2 ford is the same asC1
for d11, we make log-log plots ofTuhud21A multiplied by
2d versusuhu/T for different temperatures and for differentd
~see Fig. 5!. Then all the simulation data for different tem
peratures and differentd collapse well onto two maste
curves, one foruHu.2 and the other foruHu,2. The satu-
ration value of 2dTuhud21A as uhu/T→0 (2dC2) is approxi-
mately 2/3~we do not know if this value is exactly 2/3 o
not!, so thatC2'2/331/2d and C2}1/C1. Using this ap-
proximate expression forC2 and Eqs.~17! and~18!, we can
confirm that the slopes of the log-log plots of 2dTuhud21A
versusx5uhu/T ~Fig. 5! for large x are 21 for both uHu
.2 and uHu,2, and that their intercepts atx51 for uHu
.2 (uHu,2) are approximately log10(1/4) @ log10(1/8)#.

V. DISCUSSION AND CONCLUSIONS

Our results indicate that the divergence of the lifetim
prefactor is caused by the phonon dynamic we imposed,
by any unusual properties of the saddle points themselve
is the case for Ref.@11#. Referring to Fig. 6, we discus
saddle points and the most probable paths to escape from
metastable state for different fields.

FIG. 6. Schematic diagram that shows the most probable p
of the system for different fields. Each box represents one o
turned spin. Each configuration is labeled. The configuration
beled SA is the saddle point foruHu.2, SB foruHu,2, and SC for
uHu52. The energy difference between two configurations is giv
on the right-hand side. As shown, the energy difference between
and C is zero atuHu52, and so is the energy difference between
and SB. Therefore, atuHu52, the path from SA to SB through C i
forbidden according to the phonon dynamic, Eq.~7!. Consequently,
the system chooses the saddle point SC to reach the configur
SB (A→SA→SC→SB). Then the energy barrier atuHu52 is
ESC2EA52(822uHu)58 since the path from SC to SB is down
hill in energy.
05610
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For uHu.2, the saddle point corresponds to the config
ration SA, only one overturned spin, so the most proba
path to escape from the metastable well is A→SA. As uHu
→21, the energy difference between SA and C approac
zero ~Fig. 6!, so the transition rate between them becom
zero. Consequently, the attempt frequency to grow the dr
let along the downhill path SA→C decreases. This is th
reason that the lifetime prefactor diverges asuHu→21. Then,
a new probable path towards SC through SA begins to
preferred to the downhill path. AtuHu52, the path SA→C is
forbidden, and the most probable path is directed towards
saddle point SC.

For uHu,2, the saddle point corresponds to the config
ration SB, an L-shaped cluster of three overturned spins.
this field, the most probable path to escape from the m
stable well is A→SA→C→SB. As uHu→22, the energy
difference between SA and C and the energy difference
tween C and SB both approach zero, so that the transi
rates between them become zero. As a result, the atte
frequency along the most probable path towards the sa
point SB decreases, which leads to the prefactor diverge
asuHu→22. Then, a new probable path towards SC throu
SA develops~Fig. 6!. Thus, SC starts to compete with SB. A
uHu52, the attempt frequency towards SB is zero, and
most probable path is towards the saddle point SC.

The previously shown scaling behavior of the prefac
can be observed from the simulation data in Fig. 3. In
log-log plots ofA vs uuHu22u, a slope of2(d21) is found
for the regime whenuuHu22u/T→0, while a slope of2d is
found whenuuHu22u/T→`. The variableuuHu22u/T ~not
simply eitheruuHu22u or T) determines how those two re
gimes change with field and temperature. The slope
2(d21) occurs at smalleruuHu22u at lower temperatures
in order to reduce uuHu22u/T, compared to higher-
temperature data. The slope of2d occurs at largeruuHu
22u at higher temperatures, in order to increaseuuHu
22u/T, compared to lower-temperature data.

In summary, we have examined the prefactor of the li
time of the metastable state for a square-lattice Ising fe
magnet with ad-dimensional phonon bath attached to ea
spin. Using the transition rates calculated from the dens
matrix equation, we demonstrated analytically and num
cally that the metastable lifetime prefactor diverges asuHu
→2, and that it also scales as a function ofuuHu22u/T for
each value ofd, near uHu52 and T50. This scaling is a
result of the fact that the prefactor is a generalized homo
neous function@23# of the field and temperature. The dive
gence and scaling of the prefactor are due to the cho
dynamic, not to any nonsmooth energy landscape at the
ticular magnetic field.
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H.-B. Schüttler ~Springer-Verlag, Berlin, in press!.

@11# R.S. Maier and D.L. Stein, Phys. Rev. Lett.87, 270601~2001!.
05610
@12# R.S. Maier and D.L. Stein, J. Stat. Phys.83, 291 ~1996!.
@13# V.A. Shneidman and G.M. Nita, Phys. Rev. Lett.89, 025701

~2002!.
@14# F. Hartmann-Boutron, P. Politi, and J. Villain, Int. J. Mod

Phys. B 10, 2577 ~1996!; A. Fort, A. Rettori, J. Villain, D.
Gatteschi, and R. Sessoli, Phys. Rev. Lett.80, 612 ~1998!.

@15# K. Blum, Density Matrix Theory and Applications, 2nd ed.
~Plenum Press, New York, 1996!, Chap. 8.

@16# M.N. Leuenberger and D. Loss, Phys. Rev. B61, 1286~2000!.
@17# E. Jordão Neves and R.H. Schonmann, Commun. Math. Ph

137, 209 ~1991!.
@18# A. Bovier and F. Manzo, J. Stat. Phys.107, 757 ~2002!.
@19# P.A. Rikvold, H. Tomita, S. Miyashita, and S.W. Sides, Phy

Rev. E49, 5080~1994!.
@20# A.B. Bortz, M.H. Kalos, and J.L. Lebowitz, J. Comput. Phy

17, 10 ~1975!.
@21# M. A. Novotny, in Annual Reviews of Computational Physi

IX, edited by D. Stauffer~World Scientific, Singapore, 2001!,
pp. 153–210.

@22# D.H. Bailey, ACM Trans. Math. Softw.21, 379 ~1995!.
@23# A. Hankey and H.E. Stanley, Phys. Rev. B6, 3515~1972!.
1-7


